

ThermalTesting Building Regulations U Values

Life Cycle Assessment

Nassim Sebaibi, Jim Carfrae, Karim Touati

Thermal Testing: In laboratory

Thermal Testing: In laboratory at real scale

characterization of cob wall

Thermal Testing: In laboratory at real scale

UK Building regulations: Part L1 A

ONLINE VERSION HM Government

The Building Regulations 2010

Conservation of fuel and power	
APPROVED DOCUMENT	_

L1A Conservation of fuel and power in new dwellings

Table 2 Limiting fabric parameters	
Roof	0.20 W/ (m²K)
Wall	0.30 W∕(m²⋅K)
Floor	0.25 ₩⁄ (m²·K)
Party wall	0.20 W∕(m²⋅K)
Swimming pool basin ¹	0.25 W∕(m²⋅K)
Windows, roof windows, glazed roof-lights ² , curtain walling and pedestrian doors	2.00 W∕(m²⋅K)
Air permeability	10.0 m³∕(h·m²) at 50 Pa

2013 edition incorporating 2016 amendments – for use in England* ONLINE VERSION

FR Building regulations: RT2012

Thermal regulation 2012 "RT 2012": These are three performance requirements:

- The maximum energy efficiency of the building
- A maximum consumption primary energy of 50 kWh/m²/year
- Summer thermal comfort on conventional indoor temperature

The expected "U" for the walls : $U \le 0.36 \text{ W/m}^2.\text{K} \rightarrow \text{R} \ge 2.77 \text{ m}^2.\text{K/w}$

The **U-value** of an insulating layer depends on the **thermal conductivity** (λ) of the material and its **thickness** (e): U = λ/e .

FR SOIL	Thermal Conductivity W/(m·K)	U Value (m²·K)/W	UK SOIL
1	0,168104	1,800	1
2	0,175374	1,710	2
3	0,180617	1,666	3

UK SOIL	Thermal Conductivity W/(m·K)	U Value (m²·K)/W
1	0,196145	1,530
2	0,18902	1,600
3	0,196319	1,530

Traditional Cob	Density	Thickness m	Cond. W/m K	Resistance m2 K/W	
Internal surface		n/a	n/a	0.12	
Cob	1600	0.700	0.64	1.09	
External Surface		n/a	n/a	0.06	
Total Resistance				1.27	
U-Value				0.79	

Has to be .30

How thick would a traditional cob wall have to be to pass regulations?

Traditional Cob	Density	Thickness m	Cond. W/m K	Resistance m2 K/W
Internal surface		n/a	n/a	0.12
Cob	1600	(2.00)	0.64	3.13
External Surface		n/a	n/a	0.06
Total Resistance				3.30
U-Value				0.30
			\ Two met	res!

How light would a cob wall have to be to pass regulations?

Less than half the density

Unfortunately, this lightweight cob wall could not support a second floor or a roof

The solution – A composite cob wall

Composit Cob	Density kg/m3	Thickness m	Cond. W/m.K	Resistance m2 K/W
Internal surface		n/a	n/a	0.12
Dense Cob UK6 5% Hemp straw	1600	0.300	0.45	0.67
Lightweight Cob UK3 50% Hemp shiv	340	0.300	0.11	2.73
External Surface		n/a	n/a	0.06

Total Resistance	3.57
U-Value W/m2K	0.28
Table 2 Limiting fabric parameters	
oof	0.2 0 W/ (m² ·K)
Vall	0.30 W∕(m²⋅K)

Wall **-**I - - --

The CobBauge wall with finishes

Composite Cob + finishes	Density kg/m3	Thickness m	Cond. W/m.K	Resistance m2 K/W
Internal surface		n/a	n/a	0.12
Internal earthen plaster		0.03	0.44	0.07
Dense Cob UK6 2.5% Hemp straw	1423	0.250	0.44	0.57
Lightweight Cob UK3 50% Hemp shiv	340	0.300	0.11	2.73
Lime render		0.03	0.60	0.05
External Surface		n/a	n/a	0.06
Total Resistance				3.59
U-Value W/m2K				0.28

The same U value, standard finishes, and is now 556mm thick

Life Cycle Assessment – Embodied Energy

Calculating LCA - SimaPro

Output: European Product Declaration for CobBauge

New French Regulation RE2020

Life Cycle Assessment – Why is this important?

Thank you

IRONMENTAL BUILDING SEARCH PI YMOUTH. UNIVERSITY

เห่เลียง UNIVERSITÉ CAEN NORMANDIE

HUDSONArchitects