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Abstract: 
Present study aims to evaluate the effect of fiber crushing on the structural and 
hygrothermal properties of light earth. For this purpose, reed fibers were treated 
differently and incorporated in the light earth. The fibers were first cut, then partially 
crushed. After that, crushed and uncrushed fiber were mixed into a clay soil. The 
obtained light earth samples were structurally and hygro-thermally characterized. Fiber 
grinding showed a decrease in the light earth hygrothermal properties, including thermal 
conductivity, sorption, and water vapor permeability. This was assumed due to the 
change in porosity. 
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1. Introduction 
In the context of the global energy transition, several approaches are being explored to 
reduce the energy consumption and carbon footprint of buildings without compromising 
occupant comfort. Some researchers are attempting to improve the thermal performance 
of the walls without disturbing the building envelope by using heat storage system 
(ALASSAAD et al., 2021, ANGO, 2011) or adding insulation layers (ZACH et al., 
2013). Otherwise, new innovative solutions targeting building wall improvement have 
begun to emerge, mainly in concrete. It involves adding components to the cement 
matrix which can enhance the thermal behavior, such as foaming to increase the voids 
in the concrete (RUIWEN, 2004) or including light aggregates (CHIDIGHIKAOBI, 
2019, NGUYEN et al., 2014, YUN et al., 2013). The porosity offered by the foam or 
lightweight aggregates decreases the thermal conductivity of the concrete as a function 
of their dosage in the mix. In compliance with thermal and environmental regulations, 
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the well-known earth construction techniques (adobe, cob, light earth, etc.) have been 
revised. So many investigations have been undertaken for a better understanding of 
earth-based materials thermal, hygroscopic and mechanical behavior, in order to find an 
innovative solution limiting energy consumption (COLINART et al., 2020, 
GOODHEW et al., 2019, HAMARD, 2017, HOLZHUETER & ITONAGA, 2017, 
LABOREL-PRÉNERON et al., 2016, PHUNG, 2018). The use of earth-based materials 
in construction is a true alternative. Earth is a naturally occurring resource that is often 
widely available. Most earth that contain clay can be used for construction (HOUBEN 
& GUILLAUD, 2006). Materials from renewable raw materials (such as plant 
materials) are an answer to the problem of depletion of natural resources. Together with 
recyclable materials (such as earth), these materials provide an answer to the problem of 
waste at the end of the building's life. Earth-based materials are characterized by their 
good thermal mass and capacity to regulate the buildings hygrometry with a low 
economic and environmental cost. It retains or releases moisture in the air in accordance 
with the ambient humidity, contributing to a healthier indoor environment (ANGER et 
al., 2011, CAGNON et al., 2014, GIUFFRIDA et al., 2019, MEDJELEKH et al., 2017, 
TOURÉ et al., 2017, ZHANG et al., 2020). This natural moisture regulation is a quality 
missing in conventional building materials such as concrete. Many studies have been 
carried out to improve the thermal properties of earth-based materials. For example, the 
density impact on the hygrothermal properties of earth-based materials has attracted 
particular interest (CAGNON et al., 2014, COLINART et al., 2020, LABAT et al., 
2016, MEDJELEKH et al., 2017, NIANG et al., 2018, PHUNG, 2018, PHUNG et al., 
2019). Furthermore, these studies have demonstrated the effect of fiber type and shape 
on density, porosity and subsequently on hygrothermal properties. Present study aims to 
evaluate the effect of fiber shape on porosity and hygrothermal properties. For this 
purpose, reed straws were processed differently. One part is simply cut into length of 4 
cm keeping the straw aspect, the other part is cut but also crushed. These straws are 
used in a mixture of light earth for thermal insulation purposes. 
 
2. Earth-based material preparation 
Present study was inspired by the CobBauge research project in which different 
formulations were tested. Thus, the most thermally efficient earth-fiber mixture, 
reported within the project, was selected (DOCUMENTATION TECHNIQUE, 2018). 
Thereby, the material mix is composed of silty-clay earth and 25 % wt. of reed. 
As for soil characterization, plasticity, consistency and clay content were determined 
based on the Atterberg limits and the methylene blue value (MBV) according to the 
standards NF P94-051 (NF P94-051, 1993) and NF P94-068 (NF P94-068, 1998), 
respectively. The limits (liquidity limit (LL) and plasticity limit (PL) serve as an 
indicator of an earth's plasticity by giving the plasticity index (PI). The methylene blue 
test offers an indicator of the clay content and reveals the clay's activity. Results of soil 
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characterization are given in Table 1. Soil classification is performed based on 
conventional geotechnical analysis and considering the applicable standards. Besides, 
the grain size distribution was investigated following the standard XP P94-041 (XP 
P94-041, 1995). The methylene blue value and grain size distribution allow the soil 
classification as sandy, silty, or clayey. 
 
Table 1. Soil characterization.  

Parameter 
Soil distribution [%] LL 

[%] 

LP 

[%] 

PI 

[%] 

MBV 

[g/100g] 
Particle size (<2 
mm) 

Particle size (<80 
µm) 

Soil 100 95 57.8 42.5 5.64 15.3 

 
As mentioned in the introduction, the fibers are processed differently. Both fibers are 
cut at 4 cm, but a part is then crushed. Fibers aspect is shown in Figure 1. 

 
Figure 1. Aspect of fibers before and after crushing. 

 
The formulation i.e. each dosage, is defined according to the mass of soil mass. 25 % 
mass of fiber and 100 % mass of water is added. Water is added first. With this amount 
of water, the earth gets to its liquid state. Then, the fiber is added and mixed for about 2 
min. The mixing procedure is carried out within a concrete mixer (PROVITEQ 
Concrete Mixer 65 L). The molds are filled and placed in an oven at 40 °C. 
Characterization of the prepared samples begins when the samples are dry. Table 2 
summarizes the performed tests, the standards met, the size, and the number of samples 
tested. 
 
Table 2. Standard, number, and size of samples for testing. 
Test Standard Sample dimensions [cm] Number of samples 

Moisture sorption isotherm (NF EN ISO 12571, 2013) 3x3x3 3 

Water vapor permeability (NF EN ISO 12572, 2016) Ø15x5 3 

Thermal conductivity (ISO 8301, 1991) 22x22x4 3 

Porosity (NF ISO 5017, 2013) Ø11x3 3 
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3. Experimental method 
 
3.1 Porosity 
Porosity is an essential physical parameter in material characterization. According to the 
NF ISO 5017 standard (NF ISO 5017, 2013), this parameter can be measured by 
immersing small samples in a liquid, here it is a non-wetting oil, dearomatized oil. 
The samples undergo vacuum saturation in a desiccator for at least 24 hours, allowing 
the liquid to replace the air in the pores without interacting with the sample. Then they 
are weighed with the oil and then weighed in air. Finally, the samples are oven-dried at 
105 ± 5 °C. This allows the knowledge of porosity volume initially filled with oil. The 
accessible porosity p0 is given by: 
 

 

(1) 

where dry is the mass of dry specimen, the mass of saturated specimen in air and 

oil, the mass of saturated specimen in oil. Light earth, like all hygroscopic materials, is 

consumption. In the following section, light earth hygrothermal properties are described 
along with the methodologies used to study them. 
 
3.2 Hygroscopic behavior 
The first step is the study of the interaction between light earth and moisture using the 
Dynamic Vapor Sorption technique (ProUmid SPSx-
accurate monitoring of sample mass and sorption kinetics with a precision balance and 
careful temperature and humidity control. In this study, sorption isotherms of raw 
materials (earth and fibers) and mixtures are examined according to the standard ISO 
12571 (NF EN ISO 12571, 2013). 
The pre-dried samples were exposed to an environment with relative humidity varying 
from 10 % to 90 % in 5 steps while keeping the operating temperature constant at 23°C. 
Afterward, the dry cup method is used to study the capacity of a material to let water 
vapor pass through. This property called water vapor permeability was measured 
according to the standard ISO 12572 (NF EN ISO 12572, 2016). The mass tracking of 
the sample is done under a humidity gradient (0 % RH inside, 50 % RH outside). 
Measurements of water vapor permeability by the dry cup method provide insight into 
the material's behavior when moisture transfer is dominated by vapor diffusion. The 
influence of type of fibers used on the hygroscopic behavior of earth-fiber mixtures can 
be assessed by determining moisture sorption isotherms and water vapor permeability. 
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3.3 Thermal conductivity 
Thermal conductivity is an important parameter to consider when developing a 

terials. This parameter characterizes the ability of a material to 
conduct heat from a hot spot to a cold one. In this work, it is measured with a Heat Flow 

GOOCH, 2011) and used for calculation. 
The measurements were performed at 14 °C, 24 °C, 34 °C with a temperature difference 
between the two sides of the samples fixed at 10 °C. 
 
4. Results and discussion 
 
4.1 Porosity 
To observe fiber's porosity, scanning electron microscopy technique has been used. 
From SEM images reported in Figure 2, it can be seen that crushed and uncrushed fibers 
present relatively the same structure. However, the grinding degrades slightly the fibers 
pores in the different layers and destroys cavities, see Figure 2. Crushing induces a 
slight light earth porosity variation.  
 

 

 
Figure 2. MEB image of crushed (right) and uncrushed fiber (left). 
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As it can be seen in Table 3, light earth with uncrushed fibers is more porous than the 
one with crushed fibers. Furthermore, this decrease in porosity will surely impact the 
hygrothermal behavior of the light earth. 
 
Table 3. Light earth porosity when crushed and uncrushed fibers are incorporated. 
Fiber used Crushed fiber Uncrushed fiber 

Porosity [%] 54 58 

 
4.2 Hygroscopic behavior 
In present study, two hygroscopic properties have been studied. The first one is related 
to the material's ability to adsorb/absorb moisture (sorption). This property is directly 
linked to the material's constituents. In present work, light earth constituents are kept 
unchanged. Consequently, regarding its sorption behavior, no significant change will be 
held. This assumption is confirmed with the results obtained experimentally, see Figure 
3. However, water vapor permeability is largely affected by porosity as moisture seeps 
through the pores. The light earth's water vapor permeability decreases, and its water 
vapor resistance increases when the fibers are crushed, see Table 4. This slight 
resistance increase is supposed due to the small reduction in porosity. 

 
Figure 3. Moisture sorption isotherm of light earth when crushed and uncrushed fibers 

are considered. 
 

Table 4. Water vapor resistance factor of light earth when crushed and uncrushed 
fibers are considered. 

Formulation Crushed fiber Uncrushed fiber 

 7,237 7,101 
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4.3 Thermal conductivity 
Materials thermal conductivity depends, among others, on the constituent nature, their 
density as well as porosity. With the decrease of porosity, the mixture loses air-filled 
pores and consequently insulating properties are affected. When the fibers are grinded, 
the porosity decreases, and the thermal conductivity increases. As a result, light earth 
loses approximately 23 % of its thermal conductivity, see Figure 4. 

 
Figure 4. Thermal conductivity of light earth at three different temperatures. 

 
5. Conclusion 
In present study, we were interested in the effect of fiber crushing on light earth thermal 
and hygroscopic properties. Samples with different cut and/or crushed fibers have been 
prepared. Thermal conductivity, sorption behavior, and water vapor permeability have 
been experimentally studied. Regarding thermal properties, the study showed that light 
earth thermal conductivity increases when the fibers are crushed. This is supposed due 

 The fiber 
crushing has also affected the light earth water vapor permeability. Nevertheless, the 
sorption behavior does not change since the mixture constituents have been kept 
unchanged. 
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